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Solutions — week 2

Exercise 1. Let ¢; : U; — X for the inclusion of the open set.

Some quick remarks : using cocycle condition, we get @;; = @i © wi. By
hypothesis ¢;; are isomorphisms so we get : ¢;; = idr,. Then using the
cocycle condition : idx, = @ji 0 ¢;; and idr;, = @ij © @ji.

We define ! F on an open set U by :

FU)={(s:) € 1_‘[]:@'((]m Ui) |9(,9)  sji,, = Pig(Sily,, )}
as sub-(pre)sheaf of the product sheaf [[,tixF; If V. C U note that the
restriction (s;) = (si|, ) is well defined because : Siluv = 90ij(5i|Uij)\v =
goij(s“U_ v ), using the fact that ¢;; is a morphism of sheaves.
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e We show that F is indeed a sheaf. Let V = U,V,, an open cover. Let

((5£)i)a be a collection of elements lying in F(V},), such that we have

i v, = si’B v, for any «, 8. Using the sheaf property on the product
sheaf (which follows directly from the sheaf property of each factor),
we get a unique element (s;) € [[; tixFi(V) lifting the collection.
We show that this unique element lies in fact in F(V). We need
to show that for any ¢,j we have Silu,; = ‘Pij(silyij)' But when we
restrict both sides of the desired equality on V,,, the equality holds
because (s$'); lies in F(V,). So using again the uniqueness in the
sheaf property of the product sheaf, we get what we want.

e To show that F is unique up to isomorphism in Sh(X) we spell out
an universal property that it verifies. We write (F LN LixFi)i the
collection of sheaf morphisms induced by the projections from the
product. We claim that F satisfies the following universal property

For all G € Sh(X) and collections (G EN tixJFi)i of sheaf morphisms

such that :
for all U open and Vt € G(U), we have for all 7, j :
i (t)|Uij = Spij(fi(t)\mj)
there is a unique sheaf morphism G i> F such that for all 7,

pif = [i

This is indeed the case : if we take a collection (G £> LixFi)i, we get

a map f from G to the product [], ¢;xF; by the universal property

1One should question the coherence of this definition : let (s;) € F(U). Then
(1) Silu,; = Pii(Sily,, ) = ii (#5i(8510,,)) = Sily

ij
using the property for (4,7) and (j,7) and idr, = @ij o pj;. So (1) highlight why the fact
that ¢;; and ¢;; are inverses to each other is important in this gluing process.
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of the product in Sh(X). But the condition f;(t),,, = ¢i;(fi(t)|,;;)
for all 4, j says exactly that in fact f factors into F.

e Now we show that ¢y : Fy, — Fi induced by the projection is an
isomorphism of sheaves for all k. To show surjectivity we will use
crucially the cocycle condition.

(1) Surjectivity. Let V' C Uy open. Let s € Fr(V). We want to
construct an element (s;) € F(V) C [[; F:(V NU;) such that its
k-th component is sj.

For each i, we define s; using the cover V NU; = U;V NUj;;, and
the collection (¢i(sk|,,;)) of elements in F;(V N U ). It verifies
the intersection property because ;; is a morphism of sheaves.
So s; is defined by Sily,, = @ki(skw”). Note that if ¢ = k the
element defined in this way is si, because @g is the identity.
Now we claim that the collection (s;) that we just defined is
indeed in F(V'). To show this, we need to show that for any
i,7, we have : Silu,; = ‘pij(siluij)' But :

Siluy, = Phi(Sklu ) = i © Pri(Skiy,;) = Pig(Pri(skly,;)) = @i (Sily, )
Using the definition of s;’s and the cocycle condition.
(2) Injectivity. Let (s;) and (s}) be two elements in F(V') such that
their k-th component is s, = sj.. Now one gets for any i :
si = @ik(sk) = pir(s),) = s
thus proving the injectivity.
Remark. One can interpret the result of the previous exercise as sying that
the presheaf with values in categories

Sh: Ouv(X)°? — Cat

is a sheaf in a suitable sense.

Exercise 5. Let R be a ring. Let (a;) be a collection of elements such that

Spec(R) = U D(a;).

This means that 1 € (a;). Therefore there exists ay,...,a, and by,...,b, €
R such that

for some n. Therefore

Exercise 7. Stalks, morphisms and cotangent spaces

This exercise was a previous hand in exercise, and solutions are credited to
past students of the course.

(2)(Alissa) Let R be an integral domain. Consider ¢ : R[x,y] — R|z,y] a
ring homomorphism such that z — xy and y — y. Consider now the map
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f : Spec(R[z,y]) — Spec(R]z,y]) induced by the map ¢. We show that for
every A € R we have that f((z — \,9)) = ¢ 1 (z — X\, y) = (z,y). To prove
this point, consider the following commutative diagram

R[z,y] —)ny]

eV(m )/V()\ 0)

We have that ev(yg)o¢ = ev(q). Hence we have the following series of
equalities

(2,9) = kex(ev(g)) = evighy (0) = (ev(r0) 29) 1 (0)
=0 evi(0) =7z — A y) = flz = Ay)
This proves our point.
(3)(Maxence) Now let R = k be a field. We have a local homomorphism of
local rings
P
fo) + Ospecthle ). () > OSpec(kley]).(z—ry)-
But we know that Ogpec(kfzy))p = k[T, y]p for any p € Spec(k[z,y]). Thus

we can see f as a local homomorphism of local rings k:[x,y](%y) —

(2,y)
k7, Yl (z—xy)- Set m(oy and m(, ) to be the maximal ideal of respectively

k[aja y] (z,y) and k‘[ﬁ, y] (z—N\y)*

We want to understand the k-linear map m(O,U)/m%o,o) — m(/\vg)/m%/\’o). For
any maximal ideal m of k[x, y], we have the following isomorphism of k-vector
spaces (k[z,y]/m-vector spaces) :

My /m2 22 m/m?
where my, is the maximal ideal of k[x, y]m.
Furthermore, it is easy to see that {Z, 7} is a k-basis of (z,y)/ (22, zy, y?) and
{x — X\, 5} is k-basis of (x—\, y)/((x—\)?, (x—\)y, y?) since they are k-linear
independent elements in their respective quotient. Since the induced linear
map is just defined by applying ¢, we get that () = Ty = Ay and p(7) =
by definition of elements in the quotient (z — X, y)/((x — A)?, (x — Ay, y?).
That is, by taking bases as above, the linear map that we are looking for
can be describe as the following matrix



